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SUMMARY

The longitudinal foroes due to the longitude-dependent part of the Earth's
gravitational potential can have considerable effects on nearly synchronous
satellites, As a preliminary the special oase of the ciroular equatorial orbit
is oonsidered. An approximate solution is given for the motion under the
combination of all tesseral harmonios, end the relation to the Jacobi integral
is discussed. For general orbits the disturbing function for the combination
of all tesseral harmonics is developed in terms of the usual elliptic elements
and the resonant terms identified and isolated. With a suitable definition of
the mean longitude, it is shown that the motion in 1. \gitude relative to the
Earth is equivalent to that of a particle moving in a one-dimensional potential,
provided only that the eocentrioity is small,
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1 INTRODUCTION

Although various authors have disoussed the motion of nearly synchronous
satellites of the earth, only Musen and Bailie1 and Morand02’5 have oonsidered
other than a oirocular equatorial orbit, the so-called 'geostationary’ satellite.
The treatment given by Musen and Bailie is valid for large ecoentriocities and
ell inoclinations but includes only the 32’2 tesseral harmonioc, Morando, using
von Zeipel's method as modified by Hori to deal with resonance, has given the
stable positions and the periods of libration for each of the teaseral harmonios
separately up to & = 4, m = 4, In a previous pe.perl" sone results were given for
the circular equatorial orbit which hold for the superposition of all tesseral
harmonics, and the object of the present paper is to extend these results to
more general orbits and in particular to nearly ciroular but inolined orbits.

2 THE GRAVITATIONAL POTENTIAL

We will write the gravitational potentisl U(r,0,9) due to the earth at
distance r from the oentre of the earth, and at the point with colatitude 6 and
longitude ¢, in the form

U(r,8,9) = Uo(r) + U'(r,0,9) , (1)

where U = i/r is the central potential, with p = GM where M is the mass of the
earth, and

oo &
U'(r,0,9) = (w'r) z Z\ Jm(n/r)" P:(ooa 6) ocos l(q-cpa) . (2)
o=2 m=t

Here R is the mean equatorial radius of the earth, and J&m and P 27 the
oonstants assooiated with the (£,m) tesseral harmonic. Also P:( s) is the
associated Legendre function defined by

&
B0 = (- AYPEr W) - 0-AVR g it
ees (3)

The terms with m = O would give the zonal harmonics, i.e, the axially symmetrio
part of the field, and are omitted. Also the possible term in (2) with ¢ = 2,
m = 1 gmust be very small since the axis of rotation of the earth must very
nearly coinoide with the prinoipal axis®, and this term is also omitted,
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In general the tesseral harmonios lead only to short-period variations;
indeed, values of the oconstants J o and Pom have been determined from these
short-period variations in the orbital elements of oloae-earth satellites, For
& nearly synchronous satellite, however, the longitudinal forces due to the
tesseral harmonios aot oontinuously in the seme sense and produce long-period
ohanges in the energy, the semi-ma jor axis, and the mean motion, thus leading
to a libration in longitude., The main effect of the axially-symmetrio terms
whioh have been omitted from (1) and (2) (the only significant term is the
seoond zonal harmonio which corresponds to the oblatensss of the earth) is to
produce a regression of the orbital plane whioch at synchronous height is of
much longer period than the libration in longitude. The motion of distant
oiroular orbits, inoluding synchronous orbits, under the combined effect of
the earth's oblateness and the luni-solar foroes has recently been discussed by
Allan and Coaks.

3 CIRCULAR FEQUATORIAL ORBIT

If the orbit is ciroular and equatorial, the satellite will appear to be
nearly stationary relative to the earth, apart from the long-period motion in
longitude, and this special ocase is amenable to a simple treatment. Ve will
ignore the small north-south component of force due to the odd tesseral
harmonios (i,e, those with £-m odd, which are antisymmetrio absut the
equatorial plane) and assume that the satellite remains in the equatorial plane,
Taking the polar coordinates of the satellite as r and ¢, and the angular
velooity of rotation of the earth as By the mean motion of the satellite is
nen + @ Then the radial and transverse equations of motion oan be written

as
i‘-r(n°+$)2 = -'“2""1’1. ’ (&)
r
.1; g,;{rz(no+$)] = 2f'(n°+6) +rp = PQ ’ (5)

where Fr and F_ are the radial and transverse omponents of the disturbing
faroe derived frou (2), We may now expand about the equilibrium solution of
these equations for sero perturbing foaroce, namely
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$ = 0, r = a niaonu. (6)

o'
by writing r = a ot P and retaining only terms of first order in p and $.
This proocedure leads to the equations

'p-Snip-Zgono&IFr’ (7)

2nop+ao'¢ = F‘P . (8)
By eliminating p between (7) and (8) we can derive the following single
equation for ¢

2
. {q,(iv) v o2 q,(u)} = -moR -2 de(R) i?' ) . (9

Since 4/dt operating on F,or ¥ is equivalent to #(3/3r) + $(3/3¢), the second
term on the right of (9) is of higher order than the first term, and may be
negleoted. Similarly the third term on the right of (9) is smaller still, and
is also neglected, Also provided the long-period motion in longitude is slow
compared with the rotation of the earth, ¢\1¥) on the left may also be negleoted.
Finally this leaves the approximate equation

8, % = - 3F¢ . (10)
It is worth noting that according to (10), the apparent longitudinal accelera-
tion relative to the earth 1. the long-period motion is three times as great

as the true acceleration and in the opposite sense. Physiocally if the longitu-
dinal foroe is in the direction of motion of the satellite (!" > 0), the energy
is inoreasing, so that the semi-major axis is also inoreasing and the mean
motion is deoreasing.

Equation (10) contains only the longitudinal component of the disturbing
foroe in the equatorial plane, which is given by

F'¢ = i‘o‘ 'g;U'(Gov'VzﬂP) ’ (11)

where the disturbing potential is given as a general superposition of harmonios
in (2). Then from (10) the equation of motion is



$ = 4 3n§ Z n J&m(p’/‘o)& P:(O) sin a(p- Q&m) . (12)

Sinoe Pﬁ(o) vanishes when (£-m) is odd, only the even tesseral harmonios
oontribute to the longitudinal disturbing foroe, Equation (12) may be
integrated at once to give

Thus the long-period motion in longitude relative to the rotgting earth is
equivalent to that of a particle moving with the velocity L $ in the one-

dimensionel gravitational potential -3U'(a°,1§/2,¢).

Deduction from the Jacobi Integral - The result (13) ocan also be derived as an
approximate form of the Jacobi integral of the system. Assuming the satellits
repains in the equatorial plane so that we oan set 6 = %/2 and 6 = 0, the
Lagrangian of the system may be written in terms of r and ¢ as

L = -;-1'2 + % rz(no + &)2 + W/r + UY(r,%/2,9) . (14)

Sinoe the Lagrangian is time-independent, the system possesses the Jacobi
integral, H = constant, which takes the form

H = -12-!'2 + % (- ni) - wr - U'(r,%/2,9) = oonstant . (15)

We will now show that this reduces to the approximate result (13) to order
J, whore J stands for J&m’ First of all from (13) $ is of order J1/2, while

from (12) § is of order J, and in general the kth derivative of ¢ is of order
2. 0n the other hand we oan write equation (4) in the form

(n°+ &)2 P = p+0J) = ni ‘(3; +0(3) , (16)

whioh leads to

r = a { -% ;&-+61+0(J3/2)} ’ (17)

° °

where 61 is of order J. Consequently



p = =%, i/mlt s 0GR, (18)

s0 that p is of order J1/ 2, while p (which is also #) is of order J and P is
3/2
of order J .,

In (15) i~2 may be negleocted since it is of order Jz, and on substituting
from (17) for r2 end r~! the remainder gives

2
1 .2 2 02,2 2
-5n°a°(1-¢/n°){1-%;?:+£9|‘%4-2514-0(.13/)}
42
-2 ol [1+§ ;“’:-51+59'= h o(J3/2)}-U'(a°,1;/2,¢)

o

= oonstant + 0(33/2) .

After multiplying cut the first product and adding, the terms involving 61
ocanoel, leaving the result

2
-n a.;‘: {% + % -&5 + 0(J3/2)} - U'(ao,s/z,cp) = oonstant ,
n
)
i.e,
%ai &2 + 3U'(aov"§/2,¢p) = oonstant + 0(J3/2) ’ (19)

which agrees with the previcus result (13).

In the light of this oonsideration of orders of magnitude, it is olear
that (10) is derived using only that part of (7) which is of order J’V 2, nanely

-3n§ p - 2a, noé = 0+ 0(J) . (m)

In fact (7) is not acourate to order J s since among the quadratioc terms
neglected the following thrce are of order J:

-8, 62 , -2n p $, + jni pa/ao .

This, however, does not affect the results (10), (12) and (13),
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For a more general orbit, the motion in longitude is still ocontrolled by
the longitudinal foroe experienced by the satellite, and it can be shovmh' that
the motion muat have the same general oharacter of an oscillation in longitude
even for orbits with considerable inoclination and ecoentricity., However it is
not easy to evaluate the mean longitudinal force when the satellite is no
longer nearly stationary relative to the earth,

It seems simplest to return to the disturbing potential (2) and express
it in termms of the elements of the orbit, The shortest, and also the most
general, development of the disturbing funotlon seems to be that given by
Izse.k7 He points out that on rotating the coordinate system the &th degree
spheriocal harmonic P (oos 0) exp(img) muat transform to a linear combination
of the {th degree spherioal harmonios P (cos 8') exp(im' ¢') where 6' and o'
are the polar coordinates in the new system. If the new coordinate system is
chosen with its pole 02Z' coinoident with the pole of' the satellite orbit then
o' = %/2 and the assooie.ted Legendre polynomials P (ooa 6') reduce to constants.
Mareover sinoce P (O) vanishes when & + n' ia od.d, the aum contains only terms
with & + m' even. The actual form of the result ocan be derived from texts on
the applications of group thecry in quantum mechanios (e.g. Wignera or Rose’ )»
end oan be written as

¢
PY(c0s 0) exp(ing) = X K72 explaf(2-25)(w+ ) + m(n-n )]} , (20)
J=0

where

L=2) 4-n {g+ m)} 2& 2J 3-n=23=-2k _~L+m+2J+2k
K a 1 ) o s .
‘a 2% au(e- 3t ¢k

eee (21)

In (20), 0 is the right asoension of the ascending node, w is the argument of
periges, £ is the true anomaly, and not is the ourrent sidereal time of
Greenwich, so that Q- not is the angle from the ourrent position of Greenwich
to the asocending node and w+ £ is the angle from the asoending node to the
ourrent poasition of the satellite (see Fig,1). Also in (21), o = cos I/2 anmd

s ® ain I/2 where I is the inolination, so that the K- coefficients depend only



on the inolination. The form K"_z‘1 quoted here is identioal to Igsak's Kgm
exoept that the faotor i& has been inoluded within the ocoeffioient.

With the aid of (20) the disturbing potential (2) ocan be written as

" s z U, (22)

where the oontribution of the (£,m)th tesseral harmonic is

,
U = W) 3, /0" 0 ) K2 emitl(e-20)(or e) - meg, )}

J=0
eee (23)

Here R denotes the real part, It has been convenient in (23) to introduce the
quantity qzm given by

. -
%n * %ent BP0 s (24)

whioh is the ourrent longitude, relative to the asoending node, of the meridian
9=9,, assooliated with the (¢;m)th tesseral harmonic.

The expression (23) still oontains the true anomely and must be developed
in terms of the mean anomaly M acocording to

o0
(/0)"" exp(ipt) = Z X;M ? exp(iqW) , (25)
q=-0°
which introduces the Hansen ocefficlents x“'p These coeffioients depend only

on the ecoentricity and can be expanded as power series in e, and we will reocall
the following properties:

(1) Irp=gq XP=1+ o(ez).
(11) If p # q, the leading term in x‘;'P is of order |p-q| in e.
Then from (23) and (25)

a (U/R) me(R/ )&“‘1 Z Y K&‘zd x =1 »0-2) exp[i[(c- 2") o+ qll-ll(pzm]} .

J q
0o (26)
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whioch completes the development of the disturbing funotion in terms of the
elenents a,e,I,0,w and ¥', where %' is the modified mean anomaly at the epoch,
defined by

t
M = fndt+x' . (27)
. ‘

To pick out the terms which will be important for synohronous orbits, we
note that the rate of change of the argument in (26) is
(e-23) & + q(n+x') - m(no-ﬁ) sgn-mn . (28)

Since n o By the resonant terms are those with q = m, and the resonant part of
the potential can be written as

U = (WR) IR & ) H 2R epiaf(2-20) @ + w01

J
eve (29)

Sinoe the Hansen coefficients in (29) are of order |£-m-2)] in e, the lowest
order of term which actually ococurs depends on whether (£~ m) is even or odd:

(1) If (¢£-mn) is even, the lowest order term is given by 2j = £-m and
is independent of e,

(11) If (¢-m) is odd, the lowest order terms are those of order e
given by 2 = L-n 21,

5 OTION ER 0 CT (Y

It seems desirable to consider in more detail the term ocontaining J2,2
which correspords to the elliptiocity of the earth's equator. Although the
coefficients J ta & not very well determined as yet it is probable that 32’2
is the largeat coeffioient, and fairly certain that it will give the dominant
term at synchronous height since U& o deoreases with distance as r.(('“). Thus
from (29), evalunting the K- ooeffioients according to (21) and expanding the
Hansen coeffioclents up to order el", the resonant part of the disturbing funo-

tion for this harmonio takes the form
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U3, = 3(WE) I, ,(R/a)
{( -2q +-%e + ...>o cos 2(M-¢* ,2“")

+ (g- o2+ %el’ + ...) o 82 cos 2(“--05’2)

+ (% + ...) o cos 2(M- «p;'z-w)} . (30)

This result could also be written down from the work of Cook10 who has given an
expliocit development of the disturbing funotion up to £ = m = 4, He was, how-
ever, only concerned with the 'long-period' terms for non-resonant conditions
and eventually discarded the terms which are important here.

The rates of ohange of all the elements,a,e,I,,w and %' can now be derived
from (30) by Lagrange's planetary equationa“. As will be shown, the motion of
synchronous satellites is determined almost entirely by the variation in the

semi-major axis, and the variations of all the other elements are unimpartant.

Consequently we give to order e" only the equation for da/dt. The Lagrange

equation for a, namely

ds/dt = (2/na)(3U"/3y') , (31)

leads to the result
ds/dt = - 12 na J, (R/a)?
2,2

4 N
1-2e +-1-Ze ...)o sin 2(M 93’24'0)

N

x 4+ (2 L, ...) o? 82 sin 2(!-@2 2)

L* (gz + ooo) BL sin 2("- Qs’z‘ﬂ) . J (32)
Clearly the most useful variable to desoribe the motlion is simply the

combination

M- 75,2 +w = (M+wef)) -n ¢t - 9,2
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which coours in the argument of the resonant term of sero order in e in (30).
The slowly~-varying quantity (M+ w+Q) - n,tdefines the mean longitule of the
satellite relative to the earth, and we will write

o= (Il+w+n)-not = [ndt-not-o-c' . (33)

where €' = %' + @ + 0 13 the modified mean longitude at the epoch.

It is fairly easy to interpret ¢ in terms of the positions of the nodes, For
an exaotly synchronous satellite (n= no) the ground-track on the earth is a
fixed ourve which degenerates to a symmetrical figure-of-eight centred on the
equator if the orbit is also oirocular (see Fig.2). For an eccentric orbit the
true anomaly is -w at the ascending node (t = tN), and (x=w®) at the descend-
ing node (¢t = tN.) , 80 that from Kepler's equation the mean anomaly takes the
values (-w+e sin w) and (x-w=- e sin w) at the ascending and descending nodes
respectively. Using these values in (33) the longitudes of the ascending and
descending nodes relative to the earth are respectively

n-notN = g-eslno ,

(0+1t)-n°tN. = pg+esinw ,

i.,e. 9 is given by the mean of the ascending and descending nodes on the earth,
In practice the satellite is not exaotly synohronous so that 3 is slowly-
varying and the ground-track changes, but the value of ¢ at any instant can
atill be determined by interpolation

Using the mean longitude ¢ the rates of change of all the elements for a
nearly oirocular orbit are as follows:

da/dt = = 12 na JZ.Z(R/a)z o* sin 2(3- 9,0 * o(e?)
de/dt = 3ne .12’2(1!/:)2 [o"’ sin 2(9~ ’2,2) -9 o a2 sin 2(9- ¢2’2-m)} + 0(93)
dI/at = 6n .12’2(11/1)2 o> s sin 2(p~ 02’2) + O(ez)

a0/t = =303, ,(8/a)% o cos 2(3- 9, ,) + O(e?)
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dn/dt = 3n .12.2(3/.;)2 f- 02(1+ 3 o%) oos 2(3- "’2,2)
+9 o2 32 cos 2(¢p~ "2,2’”)] + 0(02)
ay'/at = 3n ;;2’,‘,(11/a)2 11 o* cos 2(p- 92’2)
-9 o2 82 oos 2(3- <p2’2-w)] so(e?) (34)

There are terms in the last two equations of (34) which are of sero order in e
yet still depend on w, but these terms cancel on forming the equation for 9.
Thus fron (33)

dg/at = (n-n ) + ae'/at ,
and differentiating onoce more,

o/t = a/at + 2er/at® (35)

Then from the first of (34),
2 2 ‘0. - 2
dnfdt = + 180" J, ,(R/a)” o' sin 2(9-9, ,) + O(e") . (36)
» 4
Likewise from the last three of (34),
2 2, 2 - 2

de*/at = 6n Jz,z(R/u) o“(4 0= 1) cos 2(9- 92’2) +0(e%) , 37

and differentiating once more

a%et/at? = - 12n dp/at .12,’.‘,(11/&)2 o?(h 0%-1) x sin 2(3- v,2) * o(e?) .
oo (38)

Since d¢/dt <<n, the second term on the right of (35) is negligible compared
with the first term. In faot (36) is of order J, while (38) is of order JB/ 2
since d3/dt 1s of order /2. To lowest order the motion in mean longitule is
oontrolled only by the variation in the seai-major axis, and if the seoond term

in (35) 1s neglected the equaticn of motion can be written, to within order e,
as



1%

a%5/af = 108 stn2(3-9,,) (39)
where
@ = 36 3, (r/a) e (40)
’

There are clearly four positions of equilibrium; the two positions
9= q’z o 2 + x/2 (on the minor axis of the earth's equatorial seotion) are
atable, while those at ¢ = 9,2 and 9 = R R (on the major axis) are
unstable, To integrate (39) it 1s more convenient to change the origin to
one or other of the two stable positions by writing

v o= P-e W2,
8o that (39) becomes
Ve -3Pstn2y (41)

The first integral of (41) oan be written as

\.#2 - k2 0“2 ¥ = oonstant = ﬁi - ¥ ooaz Vo ? (42)

where Yo and é'o are the initial values, The satellite will be captured in an

effective potential well and will osocillate about one or other of the two
points of stable equilibrium provided that

&i < ¥ oos? ¥ . (43)

If this oondition 1s satisfied, ¥ will osoillate between the limits * tm say,
where

2 gin? L ‘;i + & atn? ¥y o (bs)
and (42) can be written as

¥ s Pota® g, - sl y) (45)

Froa (45) the pericd of a complete oscillation is
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¥a %/2
T = % [ (a:h:2 V.' sin2 ')-1/2 dy = % / (1--1:;2 Ya linz \:)"1/2 du .
o 0
LX Y] (10»6)
The result can be written in the alternative forms
T s Ex(stny) = B r(itsnly) (47)

where K(sin ‘!'m) is a oomplete elliptic integral of the first kind, and 2F1 is
the ordinary hypergeometrioc funotion. If the amplitude of the oscillation is
small, the period is approximately 2=/k, which is about 780 days for an orbit
of low inolination if we take I, ™ 2 x 10 . The period inoreases with the
amplitude of the oscillation and approaches infinity as Yo epproaches x/2,

To return to the variation of the remaining elements in (31..), it is olear
that de/dt is completely negligible. Both dI/dt and df)/dt must certainly be leas
than 3n Jz’ 2(E/a)2 which is approximately 5 x 107 degrees/day taking
J2’2 v 2 x 10, The inclination oscillates as the satellite performs a libra-
tion around a position of stable equilibrium, The remaining quantities dw/dt
and dy'/dt are rather larger, and also more complicated; in partiocular there are
parts of gero order in e which depend on the argument of perigee. However for
the more meaningful combination €' given in (37),

de'/at < 18n J, ,(r/a)% ,
2,2
-l -6
which is spproximately 3 x 10 = degree/day, again taking J "2 x10 ", Por
»
the first term on the right of (35), we have from (36) that

dn/dt < 18n° Iy 2(I?./a.)2 ,
»

which is spproximately 2 x 107> degree/dayz. From (36) and (38) the ratio
between the two terms on the right of (35), taking I = O for simplioity, is
(2/n) ag/at + 0(e?), Now from (45) dg/dt < k, where k = 10”7 seo™! for

Jz’z 2 x 10'5, so that the ratio is at most about 2.5 x 1o"’, and the second
term on the right of (35) is only a small correction,



From the development of Seotion 4 and in partioular from (29) et seq, the
resonant part of the oomplete disturbing funotion to lowest (sero) order in e
nay be written as

vt = (wR) Z J&m(ft/et)l'+1 K:m cos n(M+ w- %m) + 0(e) . (48)

Here the dash denotes that the summation is only over the even tesseral harmonios;
the part of order e arises from the odd tesseral harmonios. In writing (48), we
have used the properties of the Hansan coefficients and also the faot that,
acoording to (21), the K- coefficients are real for &{-m even., This disturbing
function is then adequate to desoribe the motion for orbits at any inoclination
provided the eccentricity is small,

From (20) it is clear that when I = 0, 6 = %/2, and oonsequently
-23 m
K:m = 6&_23’. pc(o) for I = O, Thus it is possible to write, when ¢-nm is
even,

Koa(I) = Dyn(1) P(0) (49)

where each D, = 1 when I = O, Also from (24) amd (33)

la

Hto-¢, = -9, » (50)

80 that the resonant part of the dis.urbing function takes the form

e WR) ) 3R 0] Dy (1) oos a(ieyg) + Ole) (51)

where the sum is over the even tesseral harmonios., The coeffiolents D&m for
the five even tesseral harmonios up to £ = m = ) are easily found from (21) or
from the explicit development of Cook' and are given in Table 1 together with
the values of p:(o).
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TABLE 4
The ocoefficients Dﬂup toltanaul

n
Harmonios P 6(0) D &m(I)
L
(2,2) 3 D2,2 = 0
(34) 32 Dy, o~ o (1-10 415 5")

(33) 15 D, = o

ot (1-14 82428 a"’)

(4,2) -15/2 Du,z

8
(4,4) 105 D, = o

As befors the equation of motion for ¢ is given by (35) where the first
and seoond terms on the right are of order J and J3 2 respectively., Negleoting
the higher order term and combining (35) and (31),

a%3/at? = anfat = - (3/a°) U*/33 (52)

where 3/3x' in (31) has been replaced by 3/3¢ on account of (50)s Then from
(51) amd (52),

?3/at? « 32 }j n 3, (R/a)® FX(0) D, (1) sin n(3-9,)) + 0e) .
ees (53)

In finding the equation of motion for the mean longitude, we have tacitly
assumed that the odd tesseral harmonios, whioh are lumped together as the terms
of order e in the potential, only contribute terms of order e to (53). This is
fairly clear physioally since the odd harmonics are antisymmetrlc about the
equator, However we ought to consider the effeot of the odd harmonios on all
orbital elsments as we have done in (34) for the J2’2 term, Going back to (29)
and using Lagrange's planetary equations, it ia easily shown that the odd
harmcnios contribute terms of order e to da/dt, 4I/dt and df/dt. As is to be
expected the 0dd harmonics are more effective in changing the position of
perigee and give terms of sero order in e in de/dt and of order e" in &/t and
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TABLE 1

The ocoefficients DI wtolasmal

Harmonios P:(O) Dm(I)
L
(2) 3 D, =0
(32)  =3/2 Dy, m o (1210 8%+ 15 &")

6
(33) 15 py5 =0

(4,2)  -15/2 D, . = o (1-14 s2+28 %)

lhy2

8
(WY 105 D, = o

As before the equation of motion for ¢ is given by (35) where the first
and seoond terms on the right are of order J and J5 2 respectively, Negleoting
the higher arder term and combining (35) and (31),

a%3/at? « an/at = - (3/a%) aU%/ap (52)

where 3/3x' in (31) has been replaced by 3/3¢ on account of (50)s Then froa
(51) anmd (52),

Lo’ = 32 Y 3@/ F(0) Dyy(1) stn a(3- gy) ¢ Oe)
B ees (53)

In finding the equation of motion for the mean longitude, we have tacitly
assuned that the odd tesseral harmonios, whioh are lumped together as the terms
of order e in the potential, only contribute terms of order e to (53). This is
fairly clear physioally since the odd harmonics are antisymmetrio about the
equator, However we ought to oonsider the effeot of the odd harmonios on all
orbital el:ments as we have done in (34) for the J,,2 tera. Going baock to (29)
and using Lagrange's planetary equations, it is easily shown that the odd
harmcnios contribute terms of order e to da/dt, 4I/dt and aQ/dt. As is to be
expected the 0dd harmonios are more effective in ohanging the position of
perigee and give terms of sero order in e in de/dt and of order o~ in &/at ma



18

dy'/dt separately, However the oontribution to the more meaningful combination
de'/dt is easily shown to be of order e, Thus the odd teaseral harmoniocs
oontribute only terms of order e to (53). On the other hand all the even
tesseral harmonios give terms in da/dt, eto of the same form as in (34),

The result given in (53) is similar in form to (12) exocept that the
longitude ¢ in (12) has been replaced by the more general quantity ¢, and (53)
also ocontains the factors D& m(I). As for the geostationary oase the motion in
9 is equivalent to that of a particle moving in a one-dimensional potential and
in principle the satellite could be captured in any potential minimum, Of
oourse from the estimates which have so far been obtained for the coefficlents
J o’ it is very probable that the potential is dominated by the (2 ,2) harmonic
which gives just two minima in the potential, However it is just possible that
the superposition of the other tesseral harmonics oould give rise to further
pinina, particularly by splitting the prinoipal minima of the (2,2) harmonio
into a number of separate minima.

If the coeffioients D &m(I) are assumed to be suffiociently oomstant over
the period in question, (53) ocould be integrated to give

%(di/dt)z-n-)ni Z J&-(R/ao)" P:(O) D“(I) cos n(p-~ '&m) = oonstant + O(e) .

ceo (54)

However this lntegral is more suspect and less useful than the corresponding
result (13) for a nearly equatorial satellite, since the inolination of the
orbit is changing with time . It is true that the inclination of an initially
equatorial orbit also changes with time, but oD, n/ 31 vanishes for an equatorial
orbit although not for an inolined orbit. In fact two of the coefficients in
Table 1 change considerably with inoclination; DL‘ becomes negative when the
inclination exoeeds 40° and becomes positive again above 95°. Likewise Dh 2
has zeroes at 3h° and 80° inolination, The remaining coefficients in TabI; 1
are positive for all inclinations.

Although the potential is very probably dominated by the (2,2) harmenio,
it is still interesting to consider the motion under the general (£,m) tesseral
harmonic alone., From (53), if only the (¢,m) harmonic is present, there will
be 2m positions of equilibrium divided into two sets each of m as follows:

(1) 9 =9, +2p #n,
(11) o = 9, + (2p+1) %,
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where p = 0,1,2,,04(m~ 1), If the coeffiolent J, 92(0) D (1) s positive,
the former are unstable and the letter are stable, and vice-versa if the
coeffiolent 1s negative. In any oase the ooeffioient can be made positive by
suitebly redefining Py 30 88 to change the sign of J&m' Assuning the
ocoefficlent is positive, the substitution

P-0, = 2¢/mn+(2p+1) n/n , (55)

changes the origin to a stable point, and reduces the equation of motion to

§ = -3k, sin2y+0e) , (56)

where

kim e Bni u? Jm(n/so)" Po0) D, (1) . (57)

Since (56) is equivalent to (41), the equations (42) to (47) hold with k
replaced by k&m'
7 CON 10,

As is now well~known the very small longitudinal forces due to the slight
asymmetry of the Earth about its axis oan have considerable effects on nearly
synchronous satellites, Beoause these forces can act continuously in one sense,
the energy of the satellite in 1ts motion around the Earth slowly changes. As
a preliminary some further consideration has been given in the first part of
thlis Report to the special cese of a satellite in a oircular equatorial orbit,
Here, as has been shown before, the motion of the satellite relative to the
Earth is simply that of a particle moving in a one-dimensional potential which,
apart from a constant factor, is the gravitational potential at synchronous
height on the equatorial plane, This involves only the even tesseral harmonios
(1.e. those with £-m even) since the odd harmonics vanish on the equatorial
plane, Almost oertainly the principal contribution is from the term involving
32’2 whioh corresponds to an elliptioity of the Earth's equator. If the
satellite 1s suffiociently near to synchronism it oan be captured and oscillate
within a trough of this potentieal.

In the main part of this Report these results are extended to orbits at
general inclination and which are not necessarily oircular., In its motion
relative to the Earth such a satellite performs a figure-of-eight, whioch is
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symmetrio about the equator if the orbit is oiroular but is otherwise a
distorted three-dimensional ourve. Tne mathematiocal method adopted is to
expand the disturbing funotion in terms of the usual elliptioc elements and to
retain only the 'resonant' or long-period terms, Special attention has been
glven to motion under the J2,2 term alone., Finally the analysis is applied to
motion under the combination of all tesseral harmonios provided only that the
eccentrioity is small, It is found that the variation of the mean longitude
relative to the Earth 1s a simple extension of the corresponding result for
the oircular equatorial orbit, and involves only the introduction of an extra
faotor Dm(I) » deperding only on the inolination I, for each tesseral harmonio.
As before, the motion in mean longitude is equivalent to that of a partlole
moving in the appropriate one-dimensional potential, and the coefficients

D &m(I) express how the satellite in its figure-of-eight motion samples the
longitudingl force due to each of the tesseral harmonics., Only the even
tesscral harmonios are involved since the odd harmonios are antisymmetric about
the equator and their effeots ocancel out.,

The analysis presented here should permit the determination of the
ooeffioients of the even tesseral harmoniocs from observations on synohronous
satellites, For at least some of these coefficients, the aocuraoy should be
higher than ocan currently be obtained from olose-orbit satellites. Apart from
the oconverse appliocation in predioting or controlling the motion of future
synchronous satellites, such results, posaibly taken in oonjunction with close-
earth results, should improve our knowledge of the shape of the geoid and the
Earth's external gravitational field.
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